21 research outputs found

    Time stepping free numerical solution of linear differential equations: Krylov subspace versus waveform relaxation

    Get PDF
    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation method based on block Krylov subspaces. Second, we compare this new implementation against Krylov subspace methods combined with the shift and invert technique

    One-site density matrix renormalization group and alternating minimum energy algorithm

    Full text link
    Given in the title are two algorithms to compute the extreme eigenstate of a high-dimensional Hermitian matrix using the tensor train (TT) / matrix product states (MPS) representation. Both methods empower the traditional alternating direction scheme with the auxiliary (e.g. gradient) information, which substantially improves the convergence in many difficult cases. Being conceptually close, these methods have different derivation, implementation, theoretical and practical properties. We emphasize the differences, and reproduce the numerical example to compare the performance of two algorithms.Comment: Submitted to the proceedings of ENUMATH 201

    Tensor completion in hierarchical tensor representations

    Full text link
    Compressed sensing extends from the recovery of sparse vectors from undersampled measurements via efficient algorithms to the recovery of matrices of low rank from incomplete information. Here we consider a further extension to the reconstruction of tensors of low multi-linear rank in recently introduced hierarchical tensor formats from a small number of measurements. Hierarchical tensors are a flexible generalization of the well-known Tucker representation, which have the advantage that the number of degrees of freedom of a low rank tensor does not scale exponentially with the order of the tensor. While corresponding tensor decompositions can be computed efficiently via successive applications of (matrix) singular value decompositions, some important properties of the singular value decomposition do not extend from the matrix to the tensor case. This results in major computational and theoretical difficulties in designing and analyzing algorithms for low rank tensor recovery. For instance, a canonical analogue of the tensor nuclear norm is NP-hard to compute in general, which is in stark contrast to the matrix case. In this book chapter we consider versions of iterative hard thresholding schemes adapted to hierarchical tensor formats. A variant builds on methods from Riemannian optimization and uses a retraction mapping from the tangent space of the manifold of low rank tensors back to this manifold. We provide first partial convergence results based on a tensor version of the restricted isometry property (TRIP) of the measurement map. Moreover, an estimate of the number of measurements is provided that ensures the TRIP of a given tensor rank with high probability for Gaussian measurement maps.Comment: revised version, to be published in Compressed Sensing and Its Applications (edited by H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral

    Comparison of some Reduced Representation Approximations

    Full text link
    In the field of numerical approximation, specialists considering highly complex problems have recently proposed various ways to simplify their underlying problems. In this field, depending on the problem they were tackling and the community that are at work, different approaches have been developed with some success and have even gained some maturity, the applications can now be applied to information analysis or for numerical simulation of PDE's. At this point, a crossed analysis and effort for understanding the similarities and the differences between these approaches that found their starting points in different backgrounds is of interest. It is the purpose of this paper to contribute to this effort by comparing some constructive reduced representations of complex functions. We present here in full details the Adaptive Cross Approximation (ACA) and the Empirical Interpolation Method (EIM) together with other approaches that enter in the same category

    Iterative across-time solution of linear differential equations: Krylov subspace versus waveform relaxation

    Get PDF
    The aim of this paper is two-fold. First, we propose an efficient implementation of the continuous time waveform relaxation (WR) method based on block Krylov subspaces. Second, we compare this new WR-Krylov implementation against Krylov subspace methods combined with the shift and invert (SAI) technique. Some analysis and numerical experiments are presented. Since the WR-Krylov and SAI-Krylov methods build up the solution simultaneously for the whole time interval and there is no time stepping involved, both methods can be seen as iterative across-time methods. The key difference between these methods and standard time integration methods is that their accuracy is not directly related to the time step size

    How to optimize preconditioners for the conjugate gradient method: a stochastic approach

    No full text
    Abstract: The conjugate gradient method (CG) is usually used with a preconditioner which improves efficiency and robustness of the method. Many preconditioners include parameters and a proper choice of a preconditioner and its parameters is often not a trivial task. Although many convergence estimates exist which can be used for optimizing preconditioners, they typically hold for all initial guess vectors, reflecting the worst convergence rate. To account for the mean convergence rate instead, in this paper, we follow a simple stochastic approach. It is based on trial runs with random initial guess vectors and leads to a functional which can be used to monitor convergence and to optimize preconditioner parameters in CG. Presented numerical experiments show that optimization of this new functional usually yields a better parameter value than optimization of the functional based on the spectral condition number.Note: Research direction:Programming, parallel computing, multimedi
    corecore